DEPARTMENT OF
ELECTRONIC ENGINEERING

SYLLABI OF COURSES
FOR
B.E. (TELECOMMUNICATIONS ENGINEERING)
DEGREE PROGRAMME
(APPLICABLE FROM BATCH 2010-2011)

NED UNIVERSITY OF ENGINEERING & TECHNOLOGY,
KARACHI-75270, PAKISTAN
SYLLABI OF COURSES
FOR
B.E. (TELECOMMUNICATIONS ENGINEERING)
DEGREE PROGRAMME
(APPLICABLE FROM BATCH 2010-2011)

NED UNIVERSITY OF ENGINEERING & TECHNOLOGY,
KARACHI-75270, PAKISTAN
B.E (TELECOMMUNICATIONS ENGINEERING) COURSES OF STUDIES
Applicable from Batch 2010-11

FIRST YEAR

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
<th>Th</th>
<th>Pr</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-117</td>
<td>Fundamental of Electrical Engineering</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ME-107</td>
<td>Basic Mechanical Engineering</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PH-121</td>
<td>Applied Physics</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>HS-101</td>
<td>English</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TC-155</td>
<td>Engineering Drawing & Workshop</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>12</td>
<td>5</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
<th>Th</th>
<th>Pr</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-105</td>
<td>Fundamentals of Computer Engineering</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CE-105</td>
<td>Engineering Surveying</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>EL-102</td>
<td>Basic Electronics</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MT-111</td>
<td>Calculus</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HS-105</td>
<td>Pakistan Studies OR</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CY-105</td>
<td>Applied Chemistry</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>17</td>
<td>4</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

SECOND YEAR

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
<th>Th</th>
<th>Pr</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL-237</td>
<td>Digital Electronics</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>EE-216</td>
<td>Circuit Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>EE-262</td>
<td>Programming with C-Language</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>EE-221</td>
<td>Instrumentation</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MT-222</td>
<td>Linear Algebra & Ordinary Differential Equations</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>14</td>
<td>4</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
<th>Th</th>
<th>Pr</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL-234</td>
<td>Amplifiers and Oscillators</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>EE-246</td>
<td>Electrical Machines</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>EE-281</td>
<td>Electromagnetic Fields</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CS-208</td>
<td>Computer Architecture & Organization</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MT-224</td>
<td>Complex Variable & Fourier Analysis</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HS-205</td>
<td>Islamic Studies OR</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>HS-206</td>
<td>Ethical Behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
<td>3</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>
B.E (TELECOMMUNICATIONS ENGINEERING) COURSES OF STUDIES
Applicable from Batch 2010-11

THIRD YEAR

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-383</td>
<td>Communication Systems</td>
<td>3 1 4</td>
</tr>
<tr>
<td>TC-382</td>
<td>Antenna and Microwave Engineering</td>
<td>3 1 4</td>
</tr>
<tr>
<td>EE-315</td>
<td>Electric Filters</td>
<td>3 1 4</td>
</tr>
<tr>
<td>CS-309</td>
<td>Microprocessor and Assembly Language</td>
<td>3 1 4</td>
</tr>
<tr>
<td>EF-303</td>
<td>Applied Economics for Engineers</td>
<td>3 0 3</td>
</tr>
<tr>
<td>MT-331</td>
<td>Probability and Statistics</td>
<td>3 0 3</td>
</tr>
<tr>
<td>TC-334</td>
<td>Communication Electronics</td>
<td>2 1 3</td>
</tr>
<tr>
<td>HS-304</td>
<td>Business Communication & Ethics</td>
<td>3 0 3</td>
</tr>
<tr>
<td>EE-393</td>
<td>Digital Signal Processing</td>
<td>3 1 4</td>
</tr>
<tr>
<td>TC-381</td>
<td>Navigational Aids & Radar Systems</td>
<td>3 1 4</td>
</tr>
<tr>
<td>EE-374</td>
<td>Feedback Control Systems</td>
<td>3 1 4</td>
</tr>
<tr>
<td>TC-380</td>
<td>Navigational Aids & Radar Systems</td>
<td>3 1 4</td>
</tr>
</tbody>
</table>

Total: 18 4 22

FINAL YEAR

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-485</td>
<td>Telecommunications Switching Systems</td>
<td>3 1 4</td>
</tr>
<tr>
<td>TC-489</td>
<td>Digital Communication and Information Theory</td>
<td>3 1 4</td>
</tr>
<tr>
<td>TC-487</td>
<td>Wireless and Mobile Communication</td>
<td>3 1 4</td>
</tr>
<tr>
<td>CS-418</td>
<td>Computer Communication Networks</td>
<td>2 1 3</td>
</tr>
<tr>
<td>TC-490</td>
<td>*Telecommunications Engineering Project</td>
<td>- - -</td>
</tr>
<tr>
<td>TC-495</td>
<td>Satellite Communication/ Multimedia Communications (Optional)</td>
<td>3 1 4</td>
</tr>
<tr>
<td>TC-488</td>
<td>Telecommunications Management Network</td>
<td>3 1 4</td>
</tr>
<tr>
<td>CS-413</td>
<td>Internet Computing</td>
<td>3 1 4</td>
</tr>
<tr>
<td>MT-442</td>
<td>Numerical Methods</td>
<td>3 0 3</td>
</tr>
<tr>
<td>TC-492</td>
<td>Optical Fiber Communications</td>
<td>3 1 4</td>
</tr>
<tr>
<td>TC-490</td>
<td>Telecommunications Engineering Project</td>
<td>0 6 6</td>
</tr>
</tbody>
</table>

* Duration one academic year: Requires literature survey and preliminary work during this semester.
Syllabus of B.E (Telecommunications Engineering) Degree Programme

B.E (TELECOMMUNICATIONS ENGINEERING)
COURSES OF STUDIES
For Batches: 2007-08, 2008-09, and 2009-10

FIRST YEAR

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Th</td>
</tr>
<tr>
<td>EE-117</td>
<td>Fundamental of Electrical Engineering</td>
<td>100</td>
</tr>
<tr>
<td>ME-107</td>
<td>Basic Mechanical Engineering</td>
<td>100</td>
</tr>
<tr>
<td>PH-121</td>
<td>Applied Physics</td>
<td>100</td>
</tr>
<tr>
<td>HS-101</td>
<td>English</td>
<td>100</td>
</tr>
<tr>
<td>TC-155</td>
<td>Engineering Drawing & Workshop</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>450</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Th</td>
</tr>
<tr>
<td>CS-105</td>
<td>Fundamentals of Computer Engineering</td>
<td>100</td>
</tr>
<tr>
<td>CE-105</td>
<td>Engineering Surveying</td>
<td>100</td>
</tr>
<tr>
<td>EL-102</td>
<td>Basic Electronics</td>
<td>100</td>
</tr>
<tr>
<td>MT-111</td>
<td>Calculus</td>
<td>100</td>
</tr>
<tr>
<td>HS-105/HS-127</td>
<td>Pakistan Studies OR Pakistan Studies (for Foreigners)</td>
<td>100</td>
</tr>
<tr>
<td>CY-105</td>
<td>Applied Chemistry</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>600</td>
</tr>
</tbody>
</table>

SECOND YEAR

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Th</td>
</tr>
<tr>
<td>EL-237</td>
<td>Digital Electronics</td>
<td>100</td>
</tr>
<tr>
<td>EE-216</td>
<td>Circuit Theory</td>
<td>100</td>
</tr>
<tr>
<td>EE-262</td>
<td>Programming with C-Language</td>
<td>100</td>
</tr>
<tr>
<td>EE-221</td>
<td>Instrumentation</td>
<td>100</td>
</tr>
<tr>
<td>MT-222</td>
<td>Linear Algebra & Ordinary Differential Equations</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL-234</td>
<td>Amplifiers and Oscillators</td>
<td>100</td>
</tr>
<tr>
<td>EE-246</td>
<td>Electrical Machines</td>
<td>100</td>
</tr>
<tr>
<td>EE-281</td>
<td>Electromagnetic Fields</td>
<td>100</td>
</tr>
<tr>
<td>CS-208</td>
<td>Computer Architecture & Organization</td>
<td>100</td>
</tr>
<tr>
<td>MT-224</td>
<td>Complex Variable & Fourier Analysis</td>
<td>100</td>
</tr>
<tr>
<td>HS-205/HS-206</td>
<td>Islamic Studies OR Ethical Behaviour</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>600</td>
</tr>
</tbody>
</table>
Syllabus of B.E (Telecommunications Engineering) Degree Programme

B.E (TELECOMMUNICATIONS ENGINEERING) COURSES OF STUDIES
For Batches: 2007-08, 2008-09, and 2009-10

THIRD YEAR

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Marks</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-383</td>
<td>Communication Systems</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>TC-382</td>
<td>Antenna and Microwave Engineering</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>EE-315</td>
<td>Electric Filters</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>CS-309</td>
<td>Microprocessor and Assembly Language</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>EF-303</td>
<td>Applied Economics for Engineers</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MT-331</td>
<td>Probability and Statistics</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>TC-381</td>
<td>Navigational Aids & Radar Systems</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>EE-374</td>
<td>Feedback Control Systems</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

Total 600 200 800

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Marks</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-485</td>
<td>Telecommunications Switching Systems</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>TC-489</td>
<td>Digital Communication and Information Theory</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>TC-487</td>
<td>Wireless and Mobile Communication</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>CS-418</td>
<td>Computer Communication Networks</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>TC-490</td>
<td>*Telecommunications Engineering Project</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Total 400 200 600

FINAL YEAR

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Marks</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-493/ TC-486</td>
<td>Satellite Communication/ Multimedia Communications (Optional)</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>TC-488</td>
<td>Telecommunications Management Network</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>CS-413</td>
<td>Internet Computing</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>MT-442</td>
<td>Numerical Methods</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>TC-492</td>
<td>Optical Fiber Communications</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>TC-490</td>
<td>Telecommunications Engineering Project</td>
<td>0</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

Total 500 400 900

* Duration one academic year: Requires literature survey and preliminary work during this semester.
FIRST YEAR (SPRING SEMESTER)

EE-117 FUNDAMENTALS OF ELECTRICAL ENGINEERING

Electrical Elements and Circuits: Energy and energy transfer, Electric charge, electric current, potential difference & voltage, Electric power & energy, Electric circuits, Sources & element resistance, Ohm’s Law, Inductance, Capacitance, Fundamental circuit Laws, Kirchoff’s Laws, Direct application of fundamental laws to simple resistive networks, Node voltage and loop current methods.

Steady State AC Circuits: An introduction to periodic functions, RMS or effective, Average and maximum values of current & voltage for sinusoidal signal wave forms, An introduction to phasor method of analysis, Applications of phasor methods to simple AC circuits, Power and reactive power, Maximum power conditions.

Sinusoidal Steady State Analysis: Network response to sinusoidal driving functions, Complex impedance and admittance functions, Development of concept of phasors, Power consideration, Complex power, Maximum power transfer, Tuned circuits, Series and parallel RLC tuned circuits, Definition of Quality factor.

The practical work will be based on the above course.

ME-107 BASIC MECHANICAL ENGINEERING

Engineering Mechanics:

Statics: Fundamental concepts, Definitions and Units, Newton’s First Law, Forces, Moments and couples, Laws of Equilibrium, Free Body Diagrams, Structures, Frames and Mechanics,

The practical work will be based on the above course.

PH-121 APPLIED PHYSICS

Introduction: Scientific notation and significant figures. Types of errors in experimental measurements. Units in different systems. Graphical Techniques (Log, semi-log and other non-linear graphs)

The practical work will be based on the above course.

HS-101 ENGLISH

Study Skills: Reading, dictionary, library skills, speed reading, writing outlines, note taking.

Oral communication: confidence building, class discussions, speeches, verbal interaction.

Advanced reading comprehension: using texts dealing with science, literature and human rights.

Précis writing: rules of précis writing practice précis.

Controlled & guided writing: pre writing (planning, information gathering, preparing to write). Writing, search for topic sentences, developing a theme, following up ideas and arguments, outline plans etc.

Essay writing: Types of writing – narrative, descriptive, expository, argumentative etc.. Using guided writing to organize essays, Including human rights as essay topics.

Writing short reports: short background of report and its importance, memo report, brief reports on events seen / experienced like visit to an exhibition etc.

Letter writing: format and layout, formal letters, types of letters – invitations (acceptance and refusals), condolence, thanks, congratulations, to the editor, chairman class advisor, dean, vice chancellor etc.

Applied Grammar: morphology, types of sentences, sentence analysis, tenses, jumbled sentences, question tags, homonyms and homophones and
their use in sentences, punctuation – sentences and paragraphs, use of idioms.

TC-155 ENGINEERING DRAWING AND WORKSHOP

Mechanical Drawing: Drawing equipment and the use of instruments. Basic drafting techniques and standards, Geometrical curves including plan curves, Cycloid, Hypocycloid and the Involute. Intersection at various positions of geometrical bodies, such as pyramids, Cylinders and Cones, Development of surfaces, Freehand sketch of machine and engine components, locking arrangement, foundation bolts, stuffing box, shaft couplings, foot step bearing, Engine connecting rod, Concepts of working drawings of components and parts of machine and engines, dimension and specifications.

Section of Machines and Engine Components: Orthographic projections and standard practices, Isometric views with particular reference to piping and ducting.

Civil Drawing: Plan, Elevations (front, left and right) and details of buildings such as Bungalows, Flats, Offices, Workshops school and market etc., Elements of Perspective drawings.

Electrical Drawing: 11 KV Electric substation building plan including equipment layout, Trenches (for cabling etc.) Manholes, Doors, Windows, Ventilators etc.

Cable and Earth continuity conductors plan including the size and specifications. Cable laying in trenches, directly in ground, in pipes while crossing the roads etc. Details of plate type and Rod type, Earthing Electrodes.

Schematic Diagrams of substations, lighting and power distribution boards, Electrical Symbols and One line diagrams of a typical power system.

The practical work will be based on the above course.

FIRST YEAR (FALL SEMESTER)

CS-105 FUNDAMENTALS OF COMPUTER ENGINEERING

Number Systems, Historical evolution of computers, Structure and organization of computers and computer systems, computer peripherals, Introduction to software development process, introduction to common software packages and their applications, programming languages and their comparative study. High and low level languages, introduction to operating
systems and data communications, Computer networking fundamentals, Introduction to Databases and information systems.

The practical work will be based on the above course.

CE-105 ENGINEERING SURVEYING

Basics of Surveying: Definition, Evolution of Surveying, Types and Classes of Surveys, Plane Table Survey, Surveying Instrumentation, Survey References, Units of Measurement, Location Methods, Accuracy and Precision, Errors and Mistakes, Accuracy Ratio, Stationing, Field notes, Field management.

Measurement of Horizontal Distances: Methods of Linear measurement, Types of Measurement, Chains, Tapes, Standard conditions for use of Steel tapes, Taping Accessories and their use, Systematic Taping Errors and Corrections, Random Taping Errors and Mistakes in Taping, Field notes for Taping, Conventional and Electronic Field books.

Leveling: Definitions, Theory of Differential Leveling, Effects of Curvature and Refraction, Types of Levels, Automatic Level, Digital Level, Adjustment of Levels, Types of Leveling Staff, Leveling Operations, Techniques of Leveling, Benchmark Leveling (Vertical Control Survey), Profile and Cross-section Leveling, Reciprocal Leveling, Peg test, Errors in Leveling, Contours and their characteristics, Various methods of Contouring.

Angles and Directions: Horizontal and Vertical Angles, Meridians, Types of Horizontal angles, Azimuths, Bearing, Relationship between Bearings and Azimuths, Reverse Directions, Azimuth and Bearings computations, Magnetic Declination, Types of Compasses.

Theodolites / Tacheometers: Introduction, Types of Theodolites, Repeating, Directional and Electronic Theodolites, Temporary adjustments, Measurement of Horizontal and Vertical Angles, Prolonging a Straight Line, Permanent Adjustments, Use of Tachometers in computation of Horizontal and Vertical Distances.

Traverse Surveys: Open and Closed Traverses, Latitude and Departures, Computation of Error of Closure, and the accuracy of a Traverse, Traversing with Total Station Instruments, Rules of Adjustment, Effects of Traverse Adjustments on the original data, Computation of Omitted Measurements, Area of Closed Traverse Methods, Use of computer programs.

An Introduction to Geomatics and Global Positioning System: Geomatics defined, Branches of Geomatics, Remote Sensing, Techniques of remote sensing, Background information on global positioning, receivers, Satellites, Errors, GPS Surveying techniques and applications.

The practical work will be based on the above course.
EL-102 BASIC ELECTRONICS

PN Junction Diode: Introduction. PN junction diode, Unbiased diode, Barrier potential, Diffusion & drift current, Forward & reverse bias, Minority carrier current. Diode models: Ideal, practical & complete, Diode characteristics, Load line, Diode current equation. Capacitive effect on diode operation at high-frequency, Transient current, Temperature effect on diode operation. Diode applications; Rectifier, Switch, Communication, Wave-shaping, Voltage multiplier etc. Breakdown diode, Voltage regulator, Power Supply.

FET: Field effect transistor; Device, Structure & Physical operation of the MOSFET, Current-voltage characteristics. DC analysis of MOSFET circuit, MOSFET as an amplifier and as a switch, Biasing in MOS amplifier circuits.

BJT: Physical structure & operation modes of BJT, operation in the active mode, Large-signal model. DC analysis of BJT. BJT as an amplifier. Small-signal equivalent circuit models, Biasing techniques for discrete-circuit design. BJT as switch: Operation of npn in the cut-off & saturation modes, Basic BJT inverter.

The practical work will be based on the above course.

MT-111 CALCULUS

Set and Functions: Define rational, irrational and real numbers; rounding off a numerical value to specified number of decimal places or significant figures; solving quadratic, and rational inequalities in involving modulus with graphical representation; Definition of set, set operations, Venn diagrams, DeMorgan's laws, Cartesian product, Relation, Function and their types (Absolute value, greatest integer and combining functions). Graph of some well-known functions. Limit of functions and continuous and discontinuous functions with graphical representation.

Propositional Logic: Definition of Proposition, Statement and Argument, Logical Operators, Simple and Compound proposition, various types of connectives, Truth table, tautology, Contradiction, Contingency & Logical equivalence.

Boolean Algebra: Definition, Boolean function, duality, some basic theorems & their proofs, two valued Boolean algebra, Truth functions, Canonical sum of product form, Digital logic Gates & Switching circuit designs.

Complex Number: Argand diagram, De Moivre formula, root of polynomial equations, curve and regions in the complex plane, standard functions and their inverses (exponential, circular and Hyperbolic functions)
Differential Calculus: Differentiation and Successive differentiation and its application; Leibnitz theorem, Taylor and Maclaurin theorems with remainders in Cauchy and Lagrange form, power series, Taylor and Maclaurin series, L’ Hospital’s rule, extreme values of a function of one variable using first and second derivative test, asymptotes of a function, curvature and radius of curvature of a curve, partial differentiation, exact differential and its application in computing errors, extreme values of a function of two variables with and without constraints. Solution of non-linear equation, using Newton Raphson method.

Integral Calculus: Indefinite integrals and their computational techniques, reduction formulae, definite integrals and their convergence, Beta and Gamma functions and their identities, applications of integration. Centre of pressure and depth of centre of pressure.

Solid Geometry: Coordinate Systems in three dimensions. Direction cosines and ratios, vector equation of a straight line, plane and sphere, curve tracing of a function of two and three variables, Surfaces of revolutions, transformations (Cartesian to polar & cylindrical).

HS-105 PAKISTAN STUDIES

Historical and Ideological Perspective of Pakistan Movement

Two nation theory: Definition, Significance.

Creation of Pakistan: Factors leading to the creation of Pakistan, Quaid-e-Azam and the demand for Pakistan.

Land of Pakistan:

Geo-physical conditions, Geo-political and strategic importance of Pakistan, Natural resources, water and power.

Constitutional Process:

Contemporary Issues in Pakistan

A brief survey of Pakistan’s Economy: Agricultural and industrial development in Pakistan, Internal and external trade, Economic planning and prospects.

Social issues: Literacy & education in Pakistan, State of science & technology with special reference to IT education, Pakistan society and culture.

Environmental issues: Hazards of atmospheric pollution, Other forms of environmental degradation, their causes & solutions, Pakistan’s role in preservation of nature through international conventions/efforts.

Foreign Policy

Relations of Pakistan with neighbours, Relations with Super powers, Relations with Muslim world.
Syllabus of B.E (Telecommunications Engineering) Degree Programme

Human Rights

Conceptual foundations of Human Rights: What are Human rights? Definition, significance and importance, Comparative analysis of Islamic and western Perspectives of Human rights.

UN System for Protection of Human rights - an over-view: UN Charter, International Bill of Human Rights, Implementation mechanism.

Other important international treaties and conventions: The convention on the elimination of all forms of discrimination against woman, International Convention on the rights of child (CRC), Convention against torture (CAT), Refugee Convention.

Pakistan’s response to Human rights at national and international level: Constitutional Provisions, Pakistan’s obligations to international treaties and documents, Minority rights in Pakistan, Pakistan’s stand on violation of Human rights in the international perspective.

HS 127 PAKISTAN STUDIES (FOR FOREIGNERS)

Land of Pakistan: Land & People-Strategic importance- Important beautiful sights, Natural resources.

A Brief Historical Background: A brief Historical survey of Muslim community in the sub-continent, British rule & its impacts, Indian reaction, Two nation theory, Origin & development, Factors leading towards the demand of a separate Muslim state, Creation of Pakistan.

Government & Politics in Pakistan: Constitution of Pakistan, A brief outline, Governmental structure, Federal & Provincial, Local Government Institutions, Political History, A brief account.

Pakistan & the Muslim World: Relations with the Muslim countries.

Language and Culture: Origins of Urdu Language, Influence of Arabic & Persian on Urdu Language & Literature, A short history of Urdu literature.

CY-105 APPLIED CHEMISTRY

Gases: Gas Laws, Kinetic Gas Equation, Van Der Vaal’s Equation, Critical Phenomenon, Liquidification of gases, Specific heat (molar heat capacity)

Properties of Solution and Liquids: Surface Tension, Viscosity, Osmosis, Osmotic Pressure, pH-Buffer Solution, Spectrophotometry, Basic concepts of Colloidal Chemistry, Classification purification (dialysis).

Thermochemistry: Chemical Thermodynamics, Hess’s Law, Heat of reaction, Relation between H and U measurement of heat reaction, Bomb Calorimeter.

Fuels: Types of fuels, Classification of fossil fuels.

Metals and Alloys: Properties and General composition of metals and alloys such as Iron, Copper, Aluminum, Chromium, Zinc, Used in engineering field.

The practical work will be based on the above course.

SECOND YEAR (SPRING SEMESTER)

EE-216 CIRCUIT THEORY

Elementary Time Functions: Introduction to singularity functions, The
impulse function and response, The unit step function and response, Ramp
function, Exponential function and response.

Exponential Excitation and the Transformed Network: Representation
of excitations by exponential functions, Single element response, Forced
response with exponential excitation, Introduction to the transformed
network, Driving point impedance and admittance.

Laplace Transformation: Analysis of Networks by Laplace transformation,
Review of Laplace transformation, Application to network analysis.

Two Port Network: Introduction, Characterization of linear time invariant
two-ports by six sets of parameters, Relationship among parameter sets,
Interconnection of two ports.

Network Functions and Frequency Response: The concept of complex
frequency, transform impedance and transform circuits, Network functions,
One and two ports, Poles and zeros of network functions, Restrictions on pole
and zero transfer function, magnitude and phase, Complex Loci’s plots from
the plane phasors.

The practical work will base on the above course.

EE-262 PROGRAMMING WITH C-LANGUAGE

The Turbo C Programming environment: Setting up the Integrated
Development Environment, File used in C program Development, using the
Integrated Development Environment, the Basic Structure of C programs,
Explaining the printf() Function.

C Building Blocks: Variables, Input/Output, Operators, Comments.

Loops: The for Loop, The while loop, The do while loop.

Decisions: The if statement, the if-else statement: the else-if construct. The
switch statement, the Conditional operator.

Functions: Simple Functions, Functions that return a value, using
arguments to pass data to a function, using more than one functions, external
variables, prototype versus classical K and R, Preprocessor directives.

Arrays and strings: Arrays, Referring to individual Elements of the Array,
String.

Pointers: Pointer Overview, Returning data from functions, pointers and
Arrays, Pointers and Strings, Double Indirection, Pointers to Pointers.

Structures, unions, and ROM BIOS.
Turbo C Graphics Functions: Text-mode Functions Graphics - Mode Functions. Text with Graphics.

Files: Types of Disk I/O, Standard, Input/Output Binary Mode and Text mode, Record, Input/Output, Random Access, Error Conditions, System-Level Input/Output, Redirection.

Advanced Variables: Storage Classes, Enumerated data type, Renaming data type with typedef, Identifiers and Naming classes, type conversion and casting, labels and goto statement.

C++ and Object Oriented Programming: Object Oriented Programming, some useful C++ features classes and objects, constructors and memory Allocations, Inheritance, Function Overloading, Operator Overloading.

The practical work will be based on the above course.

EE-221 INSTRUMENTATION

General Theory: Classification, performance and characteristics, absolute and secondary instruments, indicating, recording and integrating instruments, controlling balancing and damping, static and dynamic characteristics.

Ammeter and Voltmeter: Classification, moving iron, moving coil, thermal, electrostatic and induction type, errors, extension of ranges, CTs and PTs, their burden and accuracy.

Power and Energy Meters: Wattmeter types, Active and Reactive power measurement, Max. demand indicator, Calibration, Classification of energy meter, KWH meter and KVARH meters, p.f. meter.

Electronic Instruments: Electronic and digital voltmeters, counters, digital frequency meter, time interval measurement, RLC meter, Power and energy meter, oscilloscope and its use.

Basic Concepts: Basic concepts of measurement, measurement of resistance, inductance and capacitance, potentiometer and bridge methods.

Magnetic Measurement: Measurement of field strength flux, permeability, B-H curve and hysteresis loop, magnetic testing of materials.

Transducers: Variable resistance and inductance transducers, linear variable differential transformer (LVDT), capacitive, photoconductive, and piezo-electric transducers, thermo electric transducers. Filtering, Instrument amplifiers, A/D conversion.

High Voltage measurement: Measurement of dielectric strength of insulators, high voltage surges.

The practical work will be based on the above course

MT-222 LINEAR ALGEBRA & ORDINARY DIFFERENTIAL EQUATIONS

Linear Algebra: Linearity and linear dependence of vectors, basis, dimension of a vector space, field matrix and type of matrices (singular, non-singular, symmetric, non-symmetric, upper, lower, diagonal), Rank of a matrix using row operations and special method, echelon and reduced echelon forms of a matrix, determination of consistency of a system of linear equation using rank, matrix of linear transformations, Eigen value and Eigen vectors of a matrix, Diagonalization. Applications of linear algebra (Scaling, translation, rotation and projection) with graphical representation.

Introduction to ODEs: The Concepts & Terminologies: Order and Degree; Linearity & Non-linearity; A Brief Classification of ODEs; Formulation of ODEs: Concrete Examples; Solutions: General & Particular: Concrete Examples & Applications: Initial Value Problems (IVP) and Boundary Value problems (BVP): A Brief Introduction to Issues related to Existence & Uniqueness of Solutions.

The First Order ODEs: Linear and Non-Linear: Variable Separable Cases & Applications: Growth & Decay Problems, Newton's Law of Cooling, Torricelli's Law, Simple Kinematical Dynamical Applications; Exact and No-Exact ODEs: Solution Procedures and Integrating Factors; The Standard Linear Differential Equation of First Order: Solution Procedures and Applications to RL-Circuits and RC-Circuits, Bernoulli's Equations & Logistical Growth Models, Direction Fields and Euler's and Picard's Iterative Schemes for the 1st Order ODEs,

Partial Differential Equation: Formation of partial differential equations. Solutions of first order linear and special types of second and higher order differential equations. Homogeneous partial differential equations of order one, Lagrange’s multiplier

Advance Calculus & Vector Calculus: Double & triple integral with application (Area, centroid, moment of inertia) vector differentiation & vector integral with applications, Green & Stokes theorem with applications.

SECOND YEAR (FALL SEMESTER)

EL-234 AMPLIFIERS AND OSCILLATORS

Output Stages: Introduction to classes (A, B, C, AB etc), different circuit topologies employed for implementation of different classes.

Frequency Response: Introduction, High frequency small-signal model of MOSFET, Miller’s Theorem, open circuit and short circuit time constants methods, Analysis of Common-Source, Common-Gate, Common-Drain, CS-CS cascade, CS-CD cascade, Cascade, Folded-cascade, Super-source follower circuits for mid-band gain, lower and upper-cut off frequencies.

Active and Passive Filters: Ideal filter characteristics, Passive filters, first and second order active filters. Higher order filters such as Butterworth, Chebyshev etc.

Oscillators: Introduction to feedback and s-plane, Barkhausen criterion, Amplitude limiter, Wein-Bridge oscillator, Phase-shift oscillator, Quadrature oscillator, Colpitts and Hartley, Crystal Oscillator and 555 timer operation.

Feedback: Two-port networks, properties of negative feedback, detailed analysis of the four basic feedback topologies.

The practical work will be based on the above course.

EE-246 ELECTRICAL MACHINES

Three Phase Circuits: Three phase voltages, Currents and power, Star and Delta connected circuits, Analysis of balanced three phase circuits, Line diagram, Power and power factor measurement in 3-phase circuits.

Transformer: Basic principles, Single and 3-phase transformers, Construction, General transformer equation, Voltage and current relations in transformer, Ratio of transformation, Loading a transformer, Equivalent circuits of a transformer, OC and SC tests, Regulations and methods of
calculation of regulation, Efficiency and calculation of efficiency, Auto transformer, 3-phase transformer.

Direct Current Machines: Electric circuit aspects of DC machine, Magnetic circuit aspects, Types of DC generator, Performance, Types of motors, Performance, Motor speed control, Transient and dynamic responses, Transfer functions and frequency response.

Alternating Current Machines: Rotating magnetic field, Induction motor action, Induction motor characteristics and performance, Synchronous generator characteristics and performance, Synchronous motors, Induction motor, Speed control elementary AC two phase control motors, Constructional features of fractional horse power AC motors.

Direct Current Machines Winding: Gramme Ring winding, Simple lap and wave windings, Diagrams and developments and elementary calculations.

Control Systems: Motor drive systems, Introduction to feedback Control systems, System aspects and classification, Elements of analysis of feedback control systems, Digital control systems.

The practical work will be based on the above course.

EE-281 ELECTROMAGNETIC FIELDS

Vector Analysis: scalars and vectors, vector algebra, the Cartesian coordinate system, vector components and Unit vectors, the vector field, the dot product the cross product, other coordinate systems, circular cylindrical coordinates, the spherical coordinate system, transformations between coordinate systems.

Coulomb's Law and Electric Field Intensity: The experimental law of coulomb, Electric field intensity, field of a point charge, field due to a continuous volume charge distribution, field of a line charge, field of a sheet of a charge, stream-lines and sketches of fields.

Electric Flux Density Gauss's Law and Divergence: Electric flux density, Gauss’s law, application of Guass's law, some symmetrical charge distributions, differential volume element, divergence, Maxwell’s first equation, electrostatics, the vector operator and the divergence theorem.

Energy and Potential: Energy expanded in moving a point charge in an electric field, the line integral, definition of potential difference and potential, the potential field of a point charge, the potential field of a system of charges, conservative property, potential gradient, the dipole, and Energy density in the electrostatic field.
Conductor Dielectrics and Capacitances: Current and current density continuity of current metallic conductors, conductor properties and bounded conditions, semi conductors, the nature of dielectric materials, capacitance, several capacitance examples, of a two wire lines. Curvilinear square, physical modules, current analogies, fluid flow maps the iteration method.

Poisson's and Laplace's Equations: Poison's and Laplace’s Equations, Uniqueness theorem, Examples of the solution of Laplace’s equation, examples of the solution of poison, product solution of Laplace’s equation.

The Steady Magnetic Field: Biot Savart’s Law, Amperes circuit law, curl, stoke’s theorem, Magnetic flux and magnetic flux density, the scalar and vector magnetic potentials, derivation of steady magnetic field laws.

Magnetic Forces Materials and Inductance: Force on a moving charge, force on a differential current element, force between differential current elements, force and torque on a closed circuit, the nature of magnetic materials, Magnetization and permeability, magnetic boundary conditions, the magnetic circuit, potential energy and forces on magnetic materials, inductance and mutual inductance.

Time Varying fields and Maxwell’s equations: Faraday’s Law, displacement current, Maxwell’s equation in point form, Maxwell’s equation in integral form, the retarded potential.

The Uniform Plane Wave: Wave motion in free space, wave motion in perfect dielectric, plane waves in lossy dielectrics. The Poynting vector and power considerations, propagation in good conductors, skin effect, reflection of uniform plane waves, standing wave ratio.

The practical work will be based on the above course.

CS-208 COMPUTER ARCHITECTURE & ORGANIZATION

Introduction to Computers: Evaluation of Computer Hardware and Software; Computer Organization and Architecture; Types of Computers.

Execution Unit: Register Sections - General Register design, Combinational shifter Design, Flag Register; Computer Arithmetic; ALU design; Multiplication of Signed and unsigned Integers; Division of Unsigned Integers; Floating Point Numbers; Coprocessors

Memory Organization: Characteristics of Memory Systems; Access Methods; Main Memory Design; Performance Parameters; Memory Hierarchy; Cache Memories; Associative memory Virtual memory and memory Management Concepts.
Input/ Output: Basic Concepts; Programmed I/O; Interrupt I/O - Basic concepts, Main features of Interrupt I/O; Direct Memory Access (DMA); I/O Processor; Parallel and Serial I/O; Synchronous & Asynchronous I/O.

Instruction Sets: Op-code; Addressing Modes; Instruction Types – Data Transfer Instructions; Arithmetic Instructions; Logical Instructions, Program Control Instructions; System Control Instructions; I/O Instructions; Reduced Instruction Set Computers (RISC)

Operating Systems: Operating System Overview, Scheduling; Memory Management; Recommended Reading.

The practical work will be based on the above course.

MT-224 COMPLEX VARIABLE & FOURIER ANALYSIS

Infinite Series: Application of convergence tests such as comparison, Root, Ratio, Raabe’s and Gauss tests on the behavior of series.

Complex Variable: Limit, continuity, zeros and poles of a complex function. Cauchy-Reimann equations, conformal transformation, contour integration.

Laplace Integral & Transformation: Definition, Laplace transforms of some elementary functions, first translation or shifting theorem, second translation or shifting theorem, change of scale property, Laplace transform of the nth order derivative, initial and final value theorem Laplace transform of integrals, Laplace transform of functions \(t^n \) and \(F(t) \) and \(F(t)/t \), Laplace transform of periodic function, evaluation of integrals, definition of inverse Laplace transform and inverse transforms, convolution theorem, solutions of ordinary differential and partial differential equations using Laplace transform (I.V.P’s & B.V.P’s). \(Z \) and Inverse \(Z \) – transformations, properties of \(Z \) – transformation and applications.

Fourier series: Introduction to Fourier series, Euler Fourier formulae, even and odd functions, application of Fourier series, Fourier transform and fast fourier transform and properties with applications.

HS-205 ISLAMIC STUDIES

Quranic Verses:
Here-After: Al–Baqarah – 48, and one Hadith. **Basic Islamic Practices**: Al–Mu’ minun-1-11, and two Ahadith

Kasb-e-Halal: Ta ha-81, Al- A’raf-32-33, Al-Baqarah-188, and two Ahadith.

Islamic Civilization: a) in the sub continent: pre- Islamic civilizations. The political, social & moral impacts of Islamic civilization (b) EE in the world: academic, intellectual, social & cultural impact of Islam on the world.

HS-206 ETHICAL BEHAVIOUR

Islamic Moral Theory: Ethics of Quran and its philosophical basis. Ethical precepts from Quran and Hadith and promotion of moral values in Society.

THIRD YEAR (SPRING SEMESTER)

TC-383 COMMUNICATION SYSTEMS

Introduction: Communication System, Model elements of digital communication system, Fundamental limitations.
Deterministic Signal Analysis: Representation and classifications of signals, Fourier transform theory, Transmission loss and decibels, Filter and filtering. Signal through linear system: LTI Systems, Convolution, Correlation, PSD and ESD.

Random Signal Analysis: Review of probability and random variables statistical measures, Probability models, Introduction to random processes.

Analog Communication: Signal and system models of linear CW Modulation and exponential modulation, CW modulation system, introduction to sampling.

Pulse Modulation
PAM, Pulse shaping and ISI, PWM, PPM Signal to noise ratios in analog pulse modulation, PCM.
The practical work will be based on the above course.

TC-382 ANTENNA AND MICROWAVE ENGINEERING

Basic Features of Radio Communication Systems: Radio communication systems, Modulation and Demodulation, Radiowave propagation techniques, Antennas and Aerials, Antenna Arrays, Antenna Distribution systems, Radio receiver properties, Types of receivers.

Microwave Devices: Microwave Hybrids, Attenuators.

Array Antennas: Uniform linear array of Isotropic elements, Polar diagram, Broadside array of equally spaced, equal amplitude radiators, End-fire array of equally spaced, equal amplitude radiators, Scanned line array beamwidth, Optimum element spacing, Array design using the theory of polynomials. Optimum spacing for broadside and end-fire arrays, Harsen Condition, The binomial array, Supergain array, Chebysev array, Pattern synthesis.

Transmission Lines: Basics, types of transmission lines, Line characteristics impedance and physical parameters. Signal propagation, Waveform distribution and frequency dispersion, Transmission line of finite lengths, Reflection, Transmission and Propagation constants of transmission line, Transmission line couplers.

Smith Chart and Scattering Parameters: Smith chart Impedance, Admittance manipulation on the chart, Smith chart theory and applications, Reflection coefficient, Impedance of distributed circuits, Impedance matching, S-Parameters.

The practical work will be based on the above course.
EE-315 ELECTRIC FILTERS

Introduction: Circuit Design Problem, Kind of Filters and Terminology, Passive Filters, Choice of Analog filter.

Active Device Used In Active Filters: Operational amplifiers operational transconductance amplifiers, circuit based on OAs and OTAs, characteristics of OTAs, OA and OTA based integrators.

Circuit Design Approach: Direct form of synthesis approach, cascade form of synthesis, simulation of impedance.

Design of 1st Order Filter Sections, Cascade: Design with 1st order section, all pass circuits, phase shaping.

The Biquad Circuit: Design parameters Q and wo, the biquad circuit and its response 4 opamp biquad circuit, phase response.

Circuit Design With Simulated Elements: The ideal gyrator circuit GIC and FDNR, realization of negative elements, realization of floating elements, circuit design.

Switched Capacitor Filters: The MOS switch, switched capacitor, analog operations, 1st and 2nd order filters.

Better OP-AMP Models: Realization of filter and oscillators, active R and active C Circuit approach.

Discrete Time Filters: Elements of FIR and IIR filter design filter structures, windowing process, aliasing error and quantization effect.

The practical work will be based on the above course.

CS-309 MICROPROCESSORS AND ASSEMBLY LANGUAGE

Introduction to the Microprocessors: The evolution of the microprocessor, Basic microprocessor architecture; the programming model.

Memory Interface: Memory devices, address decoding, memory interface of microprocessors, Dynamic & Static RAM.

Instruction Set and Assembly Language Programming: Data Movement Instructions; Arithmetic and Logic Instructions; Program Control Instructions; Addressing Modes; Two pass Assemblers; Assembly Languages Program Format; Pseudo Instructions; Labels; Macros and Subroutines.
Basic I/O Interface: Serial & Parallel I/O; serial communications, the serial interface and the UART, serial communications line modems; I/O port address decoding, The programmable peripheral interface; The 8279 programmable keyboard/display interface; 8251A programmable communication interface; 8254 programmable interval timer; analog-to-digital (ADC) and digital-to-analog converters (DAC).

Interrupts: Interrupt processing; Hardware interrupts; Expanding interrupt structure; 8259A programmable interrupt controller, real time clock.

The Microcontroller: Single-chip microprocessor; An introduction to microcontrollers, The 8051 internal RAM and registers; The 8051 instruction set; Other microcontrollers in the 8051 family.

Developing Microprocessor-Based Products: An introduction to the design process; preparing the specification; Developing a design; Implementing and testing the design.

The practical work will be based on the above course.

EF-303 APPLIED ECONOMICS FOR ENGINEERS

Introduction: Basic concepts, Engineering economy defined, Measures of financial effectiveness, Nomoneyr values.

The Economic Environment: Consumer and producer goods, Measures of economic worth, Price, Supply, Demand Relationship.

Selection between Alternatives: Present economy, Selection among materials, techniques designs etc. A basic investment philosophy.

Alternatives having identical lives. Alternatives having different lives.

Value Analysis: Important cost concepts, Cost-benefit analysis feasibility studies, Value analysis in designing and purchasing.

Capital Financing and Budgeting: Types of ownership, types of stock, partnership and joint stock companies, banking and specialized credit institution.

Theory of Production: Factors of production, Laws of Returns, Breakeven charts and relationships.
Industrial Relationship: Labour problems, Labour organizations prevention and settlement of disputes.

MT-331 PROBABILITY & STATISTICS

Statistics: Introduction, Types of data & variables, presentation to data, object, classifications, Tabulation, Frequency distribution, Graphical representation, Simple & Multiple Bar diagrams, Sartorial & Pie-Diagram, Histogram, Frequency Polygon, Frequency Curves & their types.

Measures Of Central Tendency And Dispersion: Statistics Averages, Median Mode, Quartiles, Range, Moments, Skew ness & Kurtosis, Quartile Deviation, Mean Deviation, Standard Deviation, Variance & its coefficient, Practical Significance in related problems.

Curve Fitting: Introduction, fitting of a first and second degree curve, fitting of exponential and logarithmic curves, related problems. Principle of least squares, Second order Statistics & Time series not in bit detail,

Simple Regression & Correlation: Introduction, Scatter diagrams, Correlation & its Coefficient, Regression lines, Rank Correlation & its Coefficient, Probable Error (P.E), Related problems.

Probability: Basic concepts, Permutation & Combination, Definitions of probability, Laws of probability, Conditional probability, Baye’s rule. Related problems in practical significance.

THIRD YEAR (FALL SEMESTER)

TC-334 COMMUNICATION ELECTRONICS

Modulation and related hardware, AM Transmitter and receivers, TRF and Super heterodyne receivers, Side band systems, suppresses carrier systems, SSB, VSB, FM generator, FM transmitter and receivers, PLL systems, RF amplifiers and Oscillators.

The practical work will be based on the above course.

HS-304 BUSINESS COMMUNICATION & ETHICS

N.B. (Item marked with an astericks (*) will be taught but not examined)

PART-I (BUSINESS COMMUNICATION)

Writing formal & business letter, Writing formal memos, Drafting notices and minutes of meeting, Drafting tender notices, Theoretical knowledge & Comprehension of contracts & agreements, Preparing proposal and technical report, Conducting & Writing a project report on a mini research (sessional work), Conducting seminar and interviews (*), Writing and presenting conference papers (*), Solving IELTS type papers (*)

PART-II (ENGINEERING ETHICS)

1. **Introduction:** Objectives of the course, Define the course, Define needs for a code of ethics

2. **Need for a Code of Ethics:** For who and why, Review of Code of Ethics of international engineering and other bodies, Review of code of Ethics of other professional bodies of Pakistan

3. **Comparing / Contrasting:** Review of PECs’ Code of Ethics, Code of Conduct, Comparison between PECs Codes and those of similar international bodies

EE-393 DIGITAL SIGNAL PROCESSING

Relationship between sampling frequency and Shannon’s theorem, continuous time and discrete time signals, Z-transform, inverse Z transform, discrete Fourier transform, fast Fourier transform, elements of FIR and IIR filter design, filter structures, FFT techniques for high speed, convolution, windowing process, aliasing error its reduction, quantization effects.

The practical work will be based on the above course.
TC-381 NAVIGATIONAL AIDS AND RADAR SYSTEMS

Radar Equations: Introduction, detection of signals in noise, receiver noise and signal to noise ratio, Probability density function, Probability of detection and false alarm, Integration of the Radar pulses, Radar cross section of targets, Transmitter power pulse repetition frequency.

MTI and Doppler Radar: Introduction to Doppler and MTI radar, Delay line cancellors, Staggered pulse repetition frequencies, Limitation to MTI performance.

Tracking Radar: Tracking with Radar, Monopulse tracking, Conical scan and sequential lobing.

Radar Transmitters: Introduction, Linear beam power tubes, Solid state RF power sources, Magnetron, Cross field amplifiers, Other RF power sources, Other aspects of Radar transmitters.

Radar Receivers: The Radar receiver, The receiver noise figure, Super Heterodyne receiver, Duplexers and receiver protectors, Radar displays.

Propagation of the Radar Waves: Introduction, Forward Scattering from a flat earth, Scattering from the round earth surface, Atmospheric Refraction, Standard propagation, Non standard propagation, Diffraction, Attenuation by atmospheric gases, External environmental noise, Other propagation effects.

Navigational aids: Terminology used in navigational Systems, Direction finding, GPS, Laser Gyro, Decca, Loran, Beacon system.

The practical work will be based on the above course.

EE-374 FEED BACK CONTROL SYSTEMS

The practical work will be based on the above course.
FINAL YEAR (SPRING SEMESTER)

TC-485 TELECOMMUNICATIONS SWITCHING SYSTEMS

Circuit Switching System Fundamental: Introduction, Space Division Switch (Cross bar switch & Multistage switch), Time Division Switch (Time Slot Interchange & TDM Bus), Space and Time division switch combination.

Implementation of Signaling system 7 over Cellular Network: Network Architecture, Interfaces and Protocols (BSSAP, MAP), Mobility Management and Call Processing.

Intelligent Networks (IN): Intelligent Network, Service Logic and Data, IN Services, IN and SS7 Protocol, IN/1, Advanced Intelligent Network, intelligent Network Application Protocol.

The practical work will be based on the above course.

TC-489 DIGITAL COMMUNICATION AND INFORMATION THEORY

Formatting & Base Band Modulation: Analog to Digital Conversion, Sampling Theory, Quantization & its Types, Pulse Code Modulation (Linear & Companded), Delta Modulation, Waveform Representation of Binary Digits, PCM Waveform Types, M-ary Modulation Waveforms

Digital Modulation Techniques: Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK), and Phase Shift Keying (PSK, DPSK, QPSK), Detection of Modulated Signal, M-Ary Digital Modulation Schemes, Sampled Matched Filter.

Multiplexing, Framing & Synchronization

Information Theory: Information measure, Entropy, Information rate, Shannon’s Theorem, Coding for discrete memory less source. Information Transmission on Discrete Channel, Discrete Channel Capacity, Linear Block Codes, Cyclic codes.

The practical work will be based on the above course.

TC-487 WIRELESS AND MOBILE COMMUNICATION

Small Scale Fading & Multipath: Multipath Propagations, Parameters of Mobile Multipath Channels, Types of Small Scale Fading.

Multiple Access Techniques for Wireless Communication: Frequency Division Multiple Access, Time Division Multiple Access, Spread Spectrum Multiple Access, Space Division Multiple Access, Packet Radio.

Wireless Networking: Limitations in Wireless Networking, Development of Wireless Networks, Traffic Routing in Wireless Networks, Mobile IP.

Wireless Markup Language (WML): WML Structure

Emerging Wireless Communication Technologies

The practical work will be based on the above course.

CS-418 COMPUTER COMMUNICATION NETWORKS

The practical work will be based on the above course.

TC-490 TELECOMMUNICATIONS ENGINEERING PROJECT

The final year students will be required to consult the Chairman of Electronic Engineering Department regarding the offering of various projects in the department and industry. The student or group of students will be assigned the project by teacher concerned and will carry out the assignment as required and directed by the teacher and/or external supervisor. At the end of the academic session, they will submit the written report on work of their project to the Chairman, preferably in the typed form. The students will be required to appear before a panel of examiners for oral examination.

The Project will be of the Following Scopes: A detailed theoretical study of some problem in Telecommunications. This may be of investigative research nature or it may be laboratory research oriented. The report may be purely economic, technical or both and may include the comparative study of different choice for the solution of the problems.
FINAL YEAR (FALL SEMESTER)

TC-493 SATELLITE COMMUNICATION

Origin of Satellite Communication, Current state of Satellite Communication, Overview of satellite systems engineering, Orbital mechanics, Look angle determination, Orbital perturbations, Orbital effects in communication system performance space craft and its subsystem, Earth station (brief description). Space Link, Satellite Access and Services

The practical work will be based on the above course.

TC-486 MULTIMEDIA COMMUNICATION (Optional)

Digital Audio: Analog to digital conversion techniques, sample rates and size, Codecs, Compression techniques, Audio synthesis, FM synthesis, IBM PC sound cards.

Television Basic: Picture elements, Horizontal and vertical scanning, Video signal information, Motion pictures, Frame and field frequencies, Horizontal and vertical scanning frequencies, Horizontal and vertical synchronization, Horizontal and vertical blanking, The 3.58-MHz Color signal, Picture qualities, The 6-MHz television broadcast channel, standards of the television, TV Receiver Block Diagram.

Digital Video: Building a digital picture, PC graphics controller, RGB and YUV Color representation, VGA and SVGA standards, Mixing video and graphics.

Digital Picture Compression: Compression techniques, JPEG and motion JPEG, JBIG.

Digital Video Compression: Video compression techniques, MPEG1 overview, MPEG1 video compression, MPEG1 video compression process, MPEG1 audio compression overview, The MPEG1 audio compression process, MPEG1 systems, MPEG2 overview, MPEG2 video compression, MPEG2 audio, MPEG2 systems, MPEG decoder, Indeo, Wavelet compression, Fractel compression, MPEG4, MPEG7
CD-ROMs: CD-ROM technology, CD-ROM, Recordable CD-ROMs, Digital video disc.

Access Network for Multimedia: DSL, HFC & 802.16

Multimedia Conferencing: What is multimedia conferencing, Achieving interoperability, Delivering conferencing data, H.320 multimedia conferencing standards, H.320 overview, H.261 video coding and decoding, H.320 terminals, Moving an H.320 cell, Conferencing applications, Transcoding

Digital Video Broadcasting: The delivery mechanism, Encoding techniques, coping with burst errors, DVB data streams, Digital audio broadcasting.

The Multimedia PC: Overview of MCI for audio-visual control, Overview of TSPI for Telecommunications, POTS call, making a fax call, Identifying the media stream, Switched video sources, Mixed source dialing.

The practical work will be based on the above course.

TC-488 TELECOMMUNICATIONS MANAGEMENT NETWORK

The practical work will be based on the above course.

CS-413 INTERNET COMPUTING

Introduction to internet systems & internet development, Technical project management, Transmission protocols, Current and emerging standards, Introduction to programming in JAVA, Control structure arrays etc, Object oriented techniques, Web page designing.

The practical work will be based on the above course.
MT-442 **NUMERICAL METHODS**

Error Analysis: Types of errors (relative, absolute, inherent, round off, truncation), significant digits and numerical instability, flow chart. Use any Computational tools to analyze the Numerical Solutions.

Linear Operators: Functions of operators, difference operators and the derivative operators, identities.

Difference Equations: Linear homogeneous and non homogeneous difference equations.

Solution of Non-linear Equations: Numerical methods for finding the roots of transcendental and polynomial equations (secant, Newton – Raphson, Chebychev and Graeffe’s root squaring methods), rate of convergence and stability of an iterative method.

Solution of Linear Equations: Numerical methods for finding the solutions of system of linear equations (Gauss-Elimination, Gauss-Jordan Elimination, triangularization, Cholesky, Jacobi and Gauss – Seidel).

Interpolation & Curve Fitting: Lagrange’s, Newton, Hermit, Spline, least squares approximation. (Linear and non-linear curves).

TC-492 **OPTICAL FIBER COMMUNICATION**

Introduction: Comparison between optical and electrical mediums, basic optical communication system, Snell’s law, refractive index, line width, optical and electrical bandwidth.

Basics of optical fiber: Step index fiber, graded index fiber, refractive index profiles, meridional and skew rays, acceptance angle and acceptance con, numerical aperture for meridional and skew rays

Wave theory of light for optical fibers: EM waves, modes, modes in planar wave guides, wave guide condition, evanescent waves, phase velocity, group velocity, group index, modes in cylindrical fibers, Parameters for single
mode fiber (cutoff wavelength, mode field diameter, effective refractive index, group delay)

Transmission characteristics of optical fiber: Attenuation due to: (i) absorption, (ii) scattering (iii) bending losses Dispersion, Reflectance and optical return losses, special types of fibers.

Elements of Optical communication system: Optical sources, modulators and modulating schemes, line coding, optical detectors, demodulator and demodulation methods, couplers, connectors, switches, splicing, optical amplifiers and repeaters, Optical time division multiplexing, wavelength division multiplexing (techniques and devices) link budgeting w.r.t time and power

Optical Networks: LAN system, FDDI, SONETS and SDH, Wavelength routing based optical networks, Optical burst switching.

The practical work will be based on the above course.

TC-490 TELECOMMUNICATIONS ENGINEERING PROJECT

The final year students will be required to consult the Chairman of Electronic Engineering Department regarding the offering of various projects in the department and industry. The student or group of students will be assigned the project by teacher concerned and will carry out the assignment as required and directed by the teacher and/or external supervisor. At the end of the academic session, they will submit the written report on work of their project to the Chairman, preferably in the typed form. The students will be required to appear before a panel of examiners for oral examination.

The Project will be of the Following Scopes: A detailed theoretical study of some problem in Telecommunications. This may be of investigative research nature or it may be laboratory research oriented. The report may be purely economic, technical or both and may include the comparative study of different choice for the solution of the problems.
Department of Telecommunications Engineering

Inter Disciplinary Courses

Following courses are offered by the Department of Telecommunications Engineering to other disciplines in N.E.D. University of Engineering and Technology.
TC-383 COMMUNICATION SYSTEMS

Introduction: Communication System, Model elements of digital communication system, Fundamental limitations.

Deterministic Signal Analysis: Representation and classifications of signals, Fourier transform theory, Transmission loss and decibels, Filter and filtering. Signal through linear system: LTI Systems, Convolution, Correlation, PSD and ESD.

Random Signal Analysis: Review of probability and random variables statistical measures, Probability models, Introduction to random processes.

Analog Communication: Signal and system models of linear CW Modulation and exponential modulation, CW modulation system, introduction to sampling.

Pulse Modulation
PAM, Pulse shaping and ISI, PWM, PPM Signal to noise ratios in analog pulse modulation, PCM.

Lab Work: Lab work will be based on above mentioned contents.

This Course is offered in TE (CIS)

TC 391 COMMUNICATION SYSTEMS - I

Introduction: Fundamental terms and definitions, Information, Message, Signal, Analog and digital signals, Elements of communication systems, Modulation and coding, Need for modulation, Coding methods and benefits.

Signals and Spectra: Methods of signal representation, Time and frequency domain, Mathematical representation of signals, Fourier series and Fourier transform, Power in a signal, Parseval's power theorem, Rayleigh energy theorem, Properties of Fourier transform, Convolution of signals, Some specific signals types as impulse step and signum functions.

Signal Transmission and Filtering: Linear time invariant systems, Impulse response and superposition integral, Transfer function, Block diagram analysis, Distortion and equalizers, Transmission loss and repeater, Ideal and real filters quadrature filters and Hilbert transform, Correlation and spectral density.

Probability and Random Variables: Probability functions, Probability models and distributions, Statistical averages.

Linear Modulation: Band pass systems and signals, AM, DSB, SSB, VSB, Power in modulated signals modulator, Balanced modulator, Switching modulator, SSB generation, Demodulators, Synchronous detection, Homodyne detection, Envelope detection.

Transmission Lines: Fundamentals of transmission line, Theory of radio frequency, Basic theory of wave guide, Transmitting and receiving antennas, Channel characteristics.

The practical work will be based on the above course.

This Course is offered in TE (Electronic Engg. and Electrical Engg.)

TC 492 COMMUNICATION SYSTEMS - II

Exponential CW Modulation: Frequency and phase modulation, Bandwidth criteria, Generation methods, Receivers, De-emphasis and pre-emphasis filtering.

Pulse Modulation and Digital Modulation: Sampling theory, Ideal sampling and reconstruction, Aliasing, PAM, PWM, PPM, TDM, PCM, DPCM, ASK, PSK, FSK, Multi-level signaling.

Telephony: Modern telephone systems, Transmission aspects, System organization, Distribution system, Electromechanical and electronic exchanges, EPABX, Mobile phones.

Television: Scanning format of video signal, Block diagram of B/W receiver, Transmitter, Color TV fundamentals, PAL and NTSC systems.

Satellite Communication: Introductory remarks and historical C background, Orbital mechanics, Locating, Satellite in orbit and w.r.t. earth, Look angles and their determination, Effect of earth’s oblateness, Sun and moon, Orbital effect in communication system performance, Transponders, Reliability, Low orbit earth satellites. Multi access formats.

Information Theory: Information contents in message, Units of information, Source coding, Entropy and information rate, Compact codes and channel capacity.
Error Detection and Correction: Linear block encoding, Humming codes, Pulse code, Pre codes and Hoffman codes etc. Automatic repeat request system (ARQ).

Microwave Tubes and Circuits: Microwave triode, Klystron types.

Semiconductor Microwave Devices: Transistors, Varactors, Gunn effect.

The practical work will be based on the above course.

This Course is offered in BE (Electronic Engg. and Electrical Engg.)