DYNAMIC STABILITY ANALYSIS OF FUNCTIONALLY GRADED MATERIAL BEAMS

Author(s): Abdolrasoul Ranjbaran¹, Moslem Hashemi², Farid Behnamianfar³

Volume: XII
No: 3
Pages: 95-106
Date: July 2015

Abstract:
Dynamic stability analysis of beams composed of functionally graded material, with a focus on the effective modelling of material properties, is considered for the study presented in this paper. A new, innovative and practical state function is defined for modelling the grading of material properties and used in deriving the governing equations. This function provided the opportunity to accurately and effectively model gradation of material properties with the property-rich conditions on two faces of the beam, and the smooth grading through its height. The governing equation was derived and an analytical solution is proposed. It is shown that the unified solution may be used for homogeneous and functionally graded materials. The dynamic stability interaction diagram for a cantilever beam under axial and follower forces are analysed and used as a verification of the presented work.

For full paper, contact:
Prof Muhammad Masood Rafi
Editor-in-Chief, NED University Journal of Research
Ph: +92 (21) 99261261-8 Ext: 2413; Fax: +92 (21) 99261255
Email: NED-Journal@neduet.edu.pk
Website: http://www.neduet.edu.pk/NED-Journal

¹ Associate Professor, Department of Civil Engineering and Environmental, Shiraz University, Iran, Ph. +989173145501, Fax: +98711647316, Email: Ranjbar@shirazu.ac.ir.
² Post-graduate student, Department of Civil Engineering, Azad University, Zahedan, Iran, Email: molhash11@yahoo.com.
³ Post-graduate student, Department of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran, Email: faridb90@gmail.com.